

Breaking Up Is Hard to Do

NSF Center for Chemical Innovation Chemistry at the Space Time Limit (CaSTL) <u>https://www.castl.uci.edu/</u>

Essential Question: How do substances combine or change (react) to make new substances?

Content Standard Addressed:

MS-PS1-2. Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred. [Clarification Statement: Examples of reactions could include burning sugar or steel wool, fat reacting with sodium hydroxide, and mixing zinc with hydrogen chloride.] [Assessment Boundary: Assessment is limited to analysis of the following properties: density, melting point, boiling point, solubility, flammability, and odor.]

NGSS Practice Standard:

Analyze and interpret data to determine similarities and differences in findings. (MS-PS1-2)

Disciplinary Core Idea:

PS1.A: Structure and Properties of Matter

Each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be used to identify it. (MS-PS1-2)

PS1.B: Chemical Reactions

Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-2)

Cross-Cutting Concept:

Patterns

Macroscopic patterns are related to the nature of microscopic and atomic-level structure. (MS-PS1-2)

Content Learning Objective:

After the teacher shows students different examples of physical change and chemical change (melting butter, adding food coloring to water, melting an ice cube, tearing a piece of paper, burning a match, burning sugar, ripening bananas, moldy strawberries), students will conduct an investigation mixing baking soda and vinegar and will decide whether this is an example of a physical change or a chemical change. Students will give evidence to support their statement.

Cooperative Groups:

Teacher will have already set norms for working in groups:

- Take turns
- Everyone shares
- Look at the speaker
- Actively listen

- o Nodding
- Asking questions for clarification
- Respect others' thinking
- Think before speaking (from Ferris, S. (2015, July). Making talk productive. *Science and Children*, *52*(9), 67 73.)

Group Roles

(adapted from similar work by Jeremy Hansuvadha, math teacher for Orange County School of the Arts)

♣ <u>Emperor</u> ♣

In charge of:

- Making official decisions
- Reading materials to the rest of the group
- Coordinating presentations
- Filling in for absent group members

♦ <u>Ambassador</u> ♦

In charge of:

- Making sure that everyone in the group participates and understands the activity
- Checking for understanding
- Facilitating discussions

♦ <u>Spy</u> ♦

In charge of:

- Making sure the group finishes the activity on time
- Asking questions to the teacher (The Spy is only allowed to ask a question if no one at the group knows the answer)
- Visiting other groups on the suggestion of the teacher

♥ <u>Designer</u> ♥

In charge of:

- Acquiring & returning materials
- Making diagrams and drawings
- Making sure that everyone at the group writes the work in their own notebook

This is a multiple day lesson.

Funding and Credits:

This project was funded by the National Science Foundation Centers for Chemical Innovation award #1414466 to V. Ara Apkarian, Ph.D. at the University of California, Irvine, Department of Chemistry. This lesson was written by Therese B. Shanahan, Ed.D., University of California, Irvine, School of Education and Cal Teach.

ENGAGE: Anchoring phenomena and central question, relating lesson to phenomena found in students' everyday lives or phenomena that are potentially intriguing, students come up with ideas or hypotheses that may help answer the central question, students construct an initial model

Estimated time: 45 minutes

Description of Engage: Teacher will show students different examples of physical change and chemical change (melting butter, adding food coloring to water, melting an ice cube, tearing a piece of paper, burning a match, burning sugar, ripening bananas, moldy strawberries). Students will observe and discuss among themselves which kind of change each example represents. Students will come up with ideas in their small groups to explain these phenomena and will create a drawing on the molecular level that will attempt to explain it. Model must have: evidence from the examples, drawings on the molecular level of what happens during the change, labels for each component, and a written explanation of the group's ideas for each kind of change.

Teacher's Role	Teacher Questions	Students' Role & Answers to
		Teacher Questions
Asking questions Developing a model	I am going to show you some examples of change, either a physical change or	Students independently look at the examples and take notes on their data table.
	a chemical change, and I want you to look at each example and think about it for 1 minute without talking to your group. Take notes and complete the data	
	table for each example.	
	(After 1 minute transpires), now I want you to talk to your group to share your ideas about the example and offer evidence to support your ideas about what kind of change this might be.	Students talk in their groups and share their ideas.
	You are going to create a model to conceptually and visually explain the difference between the two kinds of change based on the evidence from the examples I showed you.	They get chart paper and markers and draw why they think the two kinds of changes are different, using everyone's ideas.
	Be sure to label the components in your drawing, including the	

components that you think account for the ways the two kinds of changes are different.	
	Groups put their models aside for later.
The teacher will walk	They will add to these models after the
around the room and probe	investigation.
for understanding.	
	"We put adding food coloring to water
"How do you think the two	here because it is still water, just a
kinds of changes are	different color. And we put the
different?"	ripening bananas here because the
	bananas are getting mushy, not just
<i>"How are you representing"</i>	changing color. Something else is
that on your model"?	happening here."
-	

EXPLORE: Students conduct a set of empirical investigations about the phenomena, investigations provide evidence that might be useful for addressing the central question and for revising the students' model, students make observations

Estimated time: 30 minutes

Description of Explore: Teacher assembles the materials ahead of time (1 set for each group): empty plastic water bottle (0.5 liter), latex balloon, 1 tbsp baking soda inserted into the balloon before class, and vinegar (enough to fill the bottom of the bottle to a height of one half inch). Teacher creates a post-it for each table group. In the middle of the post-it is a number from 1 to 9 for each table. In the corners of the post-it are the suits of a deck of cards: in each corner the teacher will draw a heart, a diamond, a spade, or a club so that each corner has a different suit. The student sitting closest to a corner will acquire the role related to that suit. For example, if a student is sitting closest to the heart, that student would be the designer (see group roles above). As the students explore in this investigation, they fulfill the roles of their suits in order for the team to be successful.

Teacher will collect the bottles with the balloons still attached. The teacher will use these later in the lesson to have students identify the gas.

Teacher's Role	Teacher Questions	Students' Role & Answers to Teacher Questions
Asking questions	The teacher will tell the students that they will conduct an investigation to collect evidence to help explain the phenomena.	Designer collects the materials.
	Teacher will show students each of the materials and the students will describe these in their data table.	Students take notes about the baking soda and the vinegar in their data table.

The teacher may model the procedures for mixing the materials together in the bottle so that the students can see how they will conduct their tests. The teacher will walk around the room and probe for understanding.	Students watch the teacher to review the steps of the investigations.
"What do you notice?"	"The balloon gets bigger."
"What might be going on here that we can't see?"	<i>"The materials mixed and made a gas."</i>
"Are there any patterns or trends?"	The Spy may visit other groups to see if they are getting the same results. The Spy reports back to the group.
"Is the material in the balloon the same or different from the materials that you mixed together in the bottle: the baking soda and vinegar? Use evidence from your investigation to support your answer."	"The gas in the balloon is different. The baking soda is a solid and the vinegar is a liquid but we made a gas."
"Did you observe the temperature at the bottom of the bottle?"	"It is cold."
Teacher monitors students' conversations and answers to questions to plan which groups will report out in the Explain. The teacher selects groups purposefully and decides how to sequence ideas shared to build conceptual understanding.	
Teacher collects the bottles with the balloons still attached to use later in	

EXPLAIN: Students identify and analyze the patterns they find, explain the result, and reflect the results in relation to their model

Estimated time: 30 minutes

Description of Explain: Students talk in their groups about the data and the patterns that they observe. They try to explain what happened in the investigation and try to apply their explanations to the phenomenon and their model. Teacher also asks questions related to the central question that arose from the phenomenon.

Teacher's Role	Teacher Questions	Students' Role & Answers to
reacher 3 Role	Teacher Questions	Teacher Questions
Creating an explanation	Teacher tells students to talk in their groups to be	Students talk in their groups to be sure they all agree on their explanation.
Drawing a conclusion from evidence	sure everyone has an explanation for the patterns they observed in the investigation.	
	Teacher asks questions and chooses groups to reply based on the monitoring done in the Explore, choosing groups based on misconceptions, then simple answers then more complex, abstract answers.	"We found"
	"What did you find in your activity?" "What patterns did you see	<i>"We started with a solid and a liquid but made a gas."</i>
	in the data?" "Do you think this investigation was a physical change or a chemical change. Use your	<i>"We made something different. So it was a chemical change."</i>
	evidence to support your answer."	<i>"They change into something new and different."</i>
	"Here are the formulas for baking soda and vinegar: NaHCO ₃ and CH ₃ COOH. What happens to these	

	materials when you mix them in the bottle?"	
$\mathbf{D} \mathbf{V} \mathbf{A} \mathbf{T} \mathbf{T} \mathbf{A} \mathbf{T} \mathbf{D} \mathbf{D} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} A$		

EVALUATE: Students evaluate their initial model with empirical findings and revise their model

Estimated time: 20 minutes

Description of Evaluate: Students return to their models and revise their models based on their new information from their investigation. They refine their explanations based on their evidence.

Teacher's Role	Teacher Questions	Students' Role & Answers to Teacher Questions
Developing a model	Teacher directs students to take out their models and	
Arguing from evidence	add to their drawing, labels, and explanations based on	
Communicating	any new evidence they	
information	collected in the investigation.	
	Teacher walks around and monitors student work to assess whether students are changing their ideas and adding to their	Students work productively to change or add to their models and explanations.
	explanations.	

EXPLORE: Students investigate fundamental scientific concepts, ideas, and theories related to the phenomena or model that they cannot access through empirical investigations—through text, the teacher or computer simulations

Estimated time: 30 minutes

Description of Explore: Teacher gives the students the link to Test Tube Games: Bond Breaker Classroom Edition <u>https://testtubegames.com/bondbreaker3.html</u> Students can work independently or with one partner to play the first 4 levels of the game. These levels will give the students more information about attraction and repulsion of particles. Students could access the game in class or on their own since the game can be accessed by their phones or by their tablets if they are in a one-to-one district. The levels that pertain to this lesson are Level 18 and the quiz that follows it, and Levels 34 and 35. The students should write down important information that they think could help them revise their models.

Teacher's Role	Teacher Questions	Students' Role & Answers to Teacher Questions
Planning an investigation	When students have completed the levels of the	Students tell each other what they learned in the lesson.
Drawing a conclusion from evidence	game, both the introductory levels and the later ones,	

Obtaining information	including the quiz, students share with each other what they learned in the game	
Communicating	that they think can help	
information	them with their model.	
	Teacher brings them	
	together to ask questions about chemical change.	
	about chemical change.	
	"What did you learn about	"Sometimes molecules can break
	chemical change that you	apart."
	might use in revising your model?"	"Sometimes molecules need heat to
	mouer.	break apart."
	"Why do you think the	-
	bottle became colder?	"If the bottle was getting colder, then
	What was the direction of the thermal energy? Is that	the energy must have been going into the system?"
	important to notice?"	ine system:

EVALUATE: Students evaluate and revise their model using scientific ideas to which they have been introduced

Estimated time: 15 minutes

Description of Evaluate: Students return to their models one more time to add more information from the game. Students then visit each other's posters to see what others have done with the intent of adding to their own poster. While they look at the posters of other groups, they carry post it notes with them to <u>ask clarifying questions</u>, <u>agree</u> with the information they see on the posters, <u>disagree</u> with the information they see, or <u>add on</u> to the information. Each group then returns to its poster and reads the post its that were left by other students. The students make one last revision to the model.

Teacher's Role	Teacher Questions	Students' Role & Answers to
		Teacher Questions
Developing a model	Teacher tells students to add information to their	Students work productively to make more revisions.
Creating an explanation	poster based on the class discussion.	
Arguing from evidence	Teacher then gives	Students then walk around and leave productive comments on post its as
Communicating information	directions on how students will	feedback to classmates.
	ask clarifying questions, agree with the information	
	they see on the posters, <u>disagree</u> with the	

information they see, or <u>add on</u> to the information.	
Students then visit each other's posters to observe what others have done. They leave feedback on the posters with post it notes.	

EXTEND/ELABORATE: Students construct a consensus model either within a small group or as a whole class, using the strengths of each individual's model, students use the consensus model to predict or explain other related phenomena, students determine strengths and limitations of their model for further revision

Estimated Time: 10 minutes

Description of Extend/Elaborate: Teacher uses the gas in the balloons from the investigation to extinguish a lit candle in a glass jar. Teacher asks students to use this information to identify the gas. Teacher reminds students about the formulas for baking soda and vinegar: NaHCO₃ and CH₃COOH to use as hints to the possible identify of the gas.

Teacher's Role	Teacher Questions	Students' Role & Answers to Teacher Questions
Arguing from evidence	Teacher lights a tea candle in a glass jar and tells the	Students observe the demonstration.
Communicating	students to observe what	
information	happens when the gas from the balloons in the	
	investigation comes in	
	contact with the lit candle.	
	The teacher may need to	
	repeat this demonstration a	
	few times for the students.	
		Students talk in their groups about their
	Teacher tells students to	ideas. They may use these sentence
	identify the gas based on this evidence.	frames in their discussions:
		"The evidence I use to support
	Teacher gives the students the formulas for baking	<i>is</i>
	soda and vinegar, NaHCO ₃	I believe (statement)
	and CH ₃ COOH, to give them hints about the	because (justification).
	possible identity of the gas.	I know that is
		because
		Based on, I think
		··

"Was the gas part of the materials that you mixed into the bottle?"	Based on, my hypothesis is "The atoms are there but it was not the solid or the liquid."
Teacher asks students if their models have enough information to explain the phenomenon. What is their evidence?	Students will look at their model and decide if they can explain the phenomenon based on what they put on their posters. They need to support their statements with evidence from their model.
Teacher then asks students to write three sentences about chemical change to answer this question: How do substances combine or change (react) to make new substances?	Students should write about: How chemical change is different from physical change. What happens in a chemical change. Where the atoms come from in a chemical change.

Tools, Materials, & Resources

Equipment needs:	Items:
Z-Jack mental second	For Engage: butter, hot plate, food coloring, water, an ice cube, a piece of paper, a match, sugar, metal pie pan to contain sugar, ripening
	bananas, moldy strawberries
	For Explore: empty plastic water bottle (0.5 liter), latex balloon, 1 tbsp baking soda inserted into the balloon before class, and vinegar (enough to fill the bottom of the bottle to a height of one half inch).
Safety requirements	Waft vinegar when observing.
	Be sure that the balloon is snug on the top of the bottle to prevent spills.
Visual aids, Powerpoint	TestTube Games: Bond Breaker Classroom Edition
slides, handouts.	https://testtubegames.com/bondbreaker3.html
	TestTube Games: Bond Breaker 2.0 (full game) http://www.testtubegames.com/bondbreaker.html

Breaking Up is Hard to Do Demonstrations

Complete the data table for each example. Write down your evidence for each change. You will use these ideas in your group's model.

Material	Observation	Evidence for the kind of change
melting butter		
adding food coloring to water		
melting an ice cube		
tearing a piece of paper		
burning a match		
burning sugar		
ripening bananas		
moldy strawberries		

Use these sentence frames in talking to your group members about your ideas.

I think that ______ is a ______ change because ______.

Based on	_, I think that	is a
change.		

Breaking Up is Hard to Do Investigation

Complete the data table. You are collecting data to use as evidence to make a claim about what kind of change you are observing.

Materials before mixing	Observations (state of matter, color, texture)
Baking soda	
Vinegar	
Materials after mixing	Observations (state of matter, color, texture)

What happens when you mix the materials in the bottle?

Do you think that baking soda or vinegar is still present in the bottle? What is your evidence?